Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

Identifieur interne : 000173 ( Main/Exploration ); précédent : 000172; suivant : 000174

Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

Auteurs : Richard R. Rodrigues [États-Unis] ; Rosana P. Pineda [États-Unis] ; Jacob N. Barney [États-Unis] ; Erik T. Nilsen [États-Unis] ; John E. Barrett [États-Unis] ; Mark A. Williams [États-Unis]

Source :

RBID : pubmed:26505627

Descripteurs français

English descriptors

Abstract

The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined.

DOI: 10.1371/journal.pone.0141424
PubMed: 26505627
PubMed Central: PMC4624766


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.</title>
<author>
<name sortKey="Rodrigues, Richard R" sort="Rodrigues, Richard R" uniqKey="Rodrigues R" first="Richard R" last="Rodrigues">Richard R. Rodrigues</name>
<affiliation wicri:level="2">
<nlm:affiliation>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pineda, Rosana P" sort="Pineda, Rosana P" uniqKey="Pineda R" first="Rosana P" last="Pineda">Rosana P. Pineda</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barney, Jacob N" sort="Barney, Jacob N" uniqKey="Barney J" first="Jacob N" last="Barney">Jacob N. Barney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nilsen, Erik T" sort="Nilsen, Erik T" uniqKey="Nilsen E" first="Erik T" last="Nilsen">Erik T. Nilsen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barrett, John E" sort="Barrett, John E" uniqKey="Barrett J" first="John E" last="Barrett">John E. Barrett</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Mark A" sort="Williams, Mark A" uniqKey="Williams M" first="Mark A" last="Williams">Mark A. Williams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America; Department of Horticulture, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America; Department of Horticulture, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26505627</idno>
<idno type="pmid">26505627</idno>
<idno type="doi">10.1371/journal.pone.0141424</idno>
<idno type="pmc">PMC4624766</idno>
<idno type="wicri:Area/Main/Corpus">000168</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000168</idno>
<idno type="wicri:Area/Main/Curation">000168</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000168</idno>
<idno type="wicri:Area/Main/Exploration">000168</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.</title>
<author>
<name sortKey="Rodrigues, Richard R" sort="Rodrigues, Richard R" uniqKey="Rodrigues R" first="Richard R" last="Rodrigues">Richard R. Rodrigues</name>
<affiliation wicri:level="2">
<nlm:affiliation>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pineda, Rosana P" sort="Pineda, Rosana P" uniqKey="Pineda R" first="Rosana P" last="Pineda">Rosana P. Pineda</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barney, Jacob N" sort="Barney, Jacob N" uniqKey="Barney J" first="Jacob N" last="Barney">Jacob N. Barney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nilsen, Erik T" sort="Nilsen, Erik T" uniqKey="Nilsen E" first="Erik T" last="Nilsen">Erik T. Nilsen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barrett, John E" sort="Barrett, John E" uniqKey="Barrett J" first="John E" last="Barrett">John E. Barrett</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Mark A" sort="Williams, Mark A" uniqKey="Williams M" first="Mark A" last="Williams">Mark A. Williams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America; Department of Horticulture, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America; Department of Horticulture, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actinobacteria (genetics)</term>
<term>Ailanthus (genetics)</term>
<term>Ailanthus (microbiology)</term>
<term>Animals (MeSH)</term>
<term>Fungi (genetics)</term>
<term>Genetic Variation (MeSH)</term>
<term>Introduced Species (MeSH)</term>
<term>Nitrogen Cycle (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Poaceae (genetics)</term>
<term>Poaceae (microbiology)</term>
<term>Proteobacteria (genetics)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Rhamnus (genetics)</term>
<term>Rhamnus (microbiology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Virginia (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique 16S (génétique)</term>
<term>Actinobacteria (génétique)</term>
<term>Ailanthus (génétique)</term>
<term>Ailanthus (microbiologie)</term>
<term>Animaux (MeSH)</term>
<term>Champignons (génétique)</term>
<term>Cycle de l'azote (MeSH)</term>
<term>Espèce introduite (MeSH)</term>
<term>Frangula (génétique)</term>
<term>Frangula (microbiologie)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Poaceae (génétique)</term>
<term>Poaceae (microbiologie)</term>
<term>Proteobacteria (génétique)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Variation génétique (MeSH)</term>
<term>Virginie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Actinobacteria</term>
<term>Ailanthus</term>
<term>Fungi</term>
<term>Poaceae</term>
<term>Proteobacteria</term>
<term>Rhamnus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN ribosomique 16S</term>
<term>Actinobacteria</term>
<term>Ailanthus</term>
<term>Champignons</term>
<term>Frangula</term>
<term>Poaceae</term>
<term>Proteobacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Ailanthus</term>
<term>Frangula</term>
<term>Poaceae</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Ailanthus</term>
<term>Plant Roots</term>
<term>Poaceae</term>
<term>Rhamnus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genetic Variation</term>
<term>Introduced Species</term>
<term>Nitrogen Cycle</term>
<term>Phylogeny</term>
<term>Soil Microbiology</term>
<term>Virginia</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cycle de l'azote</term>
<term>Espèce introduite</term>
<term>Microbiologie du sol</term>
<term>Phylogenèse</term>
<term>Variation génétique</term>
<term>Virginie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26505627</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.</ArticleTitle>
<Pagination>
<MedlinePgn>e0141424</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0141424</ELocationID>
<Abstract>
<AbstractText>The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rodrigues</LastName>
<ForeName>Richard R</ForeName>
<Initials>RR</Initials>
<AffiliationInfo>
<Affiliation>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pineda</LastName>
<ForeName>Rosana P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barney</LastName>
<ForeName>Jacob N</ForeName>
<Initials>JN</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nilsen</LastName>
<ForeName>Erik T</ForeName>
<Initials>ET</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barrett</LastName>
<ForeName>John E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Mark A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America; Department of Horticulture, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D039903" MajorTopicYN="N">Actinobacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032268" MajorTopicYN="N">Ailanthus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058865" MajorTopicYN="Y">Introduced Species</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058458" MajorTopicYN="N">Nitrogen Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006109" MajorTopicYN="N">Poaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020560" MajorTopicYN="N">Proteobacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031955" MajorTopicYN="N">Rhamnus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014768" MajorTopicYN="N">Virginia</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26505627</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0141424</ArticleId>
<ArticleId IdType="pii">PONE-D-15-25423</ArticleId>
<ArticleId IdType="pmc">PMC4624766</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2011;2011:bar001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrika. 1947;34(1-2):28-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20287819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Apr;202(2):415-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24444123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Nov 1;30(21):3123-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25061070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2013 Sep;100(9):1726-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Jul;14(7):702-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 May 2;417(6884):67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2013 Nov 26;2(1):16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24280061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012;13:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22333067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Aug;6(8):1621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Oct 20;290(5491):521-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11039934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 May;4(5):e140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2003 Feb 1;43(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19719691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2015 Jun;30(6):357-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25900044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Jan;17(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24134461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Mar;11(3):296-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Mar;3(3):374-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2015 Oct;70(3):809-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25877793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Dec;164(4):1029-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20582439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2009 Apr;58(2):224-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 May;79(10):3294-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Sep;31(9):814-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23975157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):110-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24720813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(8):e104189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25105975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Mar;6(3):610-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22134646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Nov;167(3):733-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21618010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 19;443(7113):818-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051209</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Rodrigues, Richard R" sort="Rodrigues, Richard R" uniqKey="Rodrigues R" first="Richard R" last="Rodrigues">Richard R. Rodrigues</name>
</region>
<name sortKey="Barney, Jacob N" sort="Barney, Jacob N" uniqKey="Barney J" first="Jacob N" last="Barney">Jacob N. Barney</name>
<name sortKey="Barrett, John E" sort="Barrett, John E" uniqKey="Barrett J" first="John E" last="Barrett">John E. Barrett</name>
<name sortKey="Nilsen, Erik T" sort="Nilsen, Erik T" uniqKey="Nilsen E" first="Erik T" last="Nilsen">Erik T. Nilsen</name>
<name sortKey="Pineda, Rosana P" sort="Pineda, Rosana P" uniqKey="Pineda R" first="Rosana P" last="Pineda">Rosana P. Pineda</name>
<name sortKey="Williams, Mark A" sort="Williams, Mark A" uniqKey="Williams M" first="Mark A" last="Williams">Mark A. Williams</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000173 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000173 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26505627
   |texte=   Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26505627" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020